📚 Final Capstone: Enterprise AI System

🎯 Level 49+ ⭐ 4000 XP ⏱️ 20 min

[VIDEO-019] Track 4 Capstone: Enterprise AI System

Track: 4 - Production Mastery Module: 4 (Final Capstone) Duration: 20 minutes Level requirement: 49 XP reward: 750 XP (+ 4000 XP for completion)

---

Scene 1: The Final Challenge (0:00-2:00)

[Visual]: All previous badges assembling into the ultimate achievement [Animation]: Journey from Level 1 to Level 50 highlighted

[Audio/Script]:

"You've come so far.
>
From 'What is Claude?' to building autonomous multi-agent systems.
From single commands to production-grade infrastructure.
>
This is it. The final capstone.
>
Your challenge: Build an enterprise-grade AI system that could serve a real company.
>
Not a prototype. Not a demo. A production-ready system.
>
This combines everything:
- Multi-agent orchestration
- Scalable deployment
- Full observability
- Security and reliability
- Cost optimization
>
Let's build your masterpiece."

[Lower third]: "Track 4 Final Capstone | Level 49-50"

---

Scene 2: System Requirements (2:00-5:00)

[Visual]: Enterprise requirements document [Animation]: Requirements checking off

[Audio/Script]:

"Your enterprise system: AI Operations Center
>
A multi-agent platform for business operations automation.
>
Core Capabilities:"

[Requirements Table]:

┌─────────────────────────────────────────────────────────────────┐
│                    AI OPERATIONS CENTER                          │
├─────────────────────────────────────────────────────────────────┤
│ FUNCTIONAL REQUIREMENTS                                          │
├─────────────────────────────────────────────────────────────────┤
│ 1. Task Processing                                               │
│    - Accept tasks via API                                        │
│    - Route to appropriate specialist agents                      │
│    - Return structured results                                   │
│                                                                  │
│ 2. Agent Types (minimum 4)                                       │
│    - Research Agent: Information gathering                       │
│    - Analysis Agent: Data analysis                               │
│    - Writer Agent: Content creation                              │
│    - Code Agent: Development tasks                               │
│                                                                  │
│ 3. Orchestration                                                 │
│    - Automatic task decomposition                                │
│    - Parallel execution where possible                           │
│    - Dependency management                                       │
│                                                                  │
│ 4. Persistence                                                   │
│    - Task history                                                │
│    - Agent performance metrics                                   │
│    - Cost tracking                                               │
├─────────────────────────────────────────────────────────────────┤
│ NON-FUNCTIONAL REQUIREMENTS                                      │
├─────────────────────────────────────────────────────────────────┤
│ 1. Availability: 99.9% uptime                                    │
│ 2. Latency: <2s for simple tasks                                 │
│ 3. Scale: Handle 100 concurrent requests                         │
│ 4. Security: API key authentication                              │
│ 5. Observability: Full metrics, logs, traces                     │
│ 6. Cost: Track and limit token usage                             │
└─────────────────────────────────────────────────────────────────┘

---

Scene 3: Architecture Design (5:00-8:00)

[Visual]: Complete system architecture [Animation]: Components connecting with data flows

[Audio/Script]:

"Here's the enterprise architecture:"

[Diagram]:

                            ┌──────────────────┐
                            │   Load Balancer  │
                            │     (nginx)      │
                            └────────┬─────────┘
                                     │
                            ┌────────▼─────────┐
                            │   API Gateway    │
                            │  - Auth (API Key)│
                            │  - Rate Limiting │
                            │  - Validation    │
                            └────────┬─────────┘
                                     │
┌────────────────────────────────────┼────────────────────────────────────┐
│                                    │                                     │
│  ┌─────────────────────────────────▼─────────────────────────────────┐  │
│  │                        ORCHESTRATOR                                │  │
│  │  - Task Decomposition                                              │  │
│  │  - Agent Selection                                                 │  │
│  │  - Execution Management                                            │  │
│  │  - Result Synthesis                                                │  │
│  └───────────────────┬───────────────────────────────────────────────┘  │
│                      │                                                   │
│    ┌─────────────────┼─────────────────┬─────────────────┐              │
│    │                 │                 │                 │              │
│  ┌─▼────┐         ┌──▼───┐         ┌───▼──┐         ┌───▼──┐          │
│  │Research│       │Analysis│        │Writer │        │ Code │          │
│  │Agent  │        │Agent  │         │Agent │         │Agent │          │
│  └───────┘        └───────┘         └──────┘         └──────┘          │
│                                                                          │
│  ┌──────────────────────────────────────────────────────────────────┐  │
│  │                      SHARED SERVICES                               │  │
│  │  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────────────┐  │  │
│  │  │PostgreSQL│  │  Redis   │  │ Message  │  │    Storage       │  │  │
│  │  │(Tasks,   │  │(Cache,   │  │  Queue   │  │(Files, Artifacts)│  │  │
│  │  │ Metrics) │  │ State)   │  │(RabbitMQ)│  │                  │  │  │
│  │  └──────────┘  └──────────┘  └──────────┘  └──────────────────┘  │  │
│  └──────────────────────────────────────────────────────────────────┘  │
└─────────────────────────────────────────────────────────────────────────┘
                                     │
                    ┌────────────────┼────────────────┐
                    │                │                │
              ┌─────▼─────┐   ┌──────▼─────┐   ┌─────▼─────┐
              │ Prometheus│   │   Jaeger   │   │  Grafana  │
              │ (Metrics) │   │  (Traces)  │   │(Dashboards)│
              └───────────┘   └────────────┘   └───────────┘

---

Scene 4: Core Implementation (8:00-12:00)

[Visual]: Code structure and key files [Animation]: Files being created and connected

[Audio/Script]:

"Let's build the core components."

[Demo - Project Structure]:

ai-ops-center/
├── api/
│   ├── __init__.py
│   ├── main.py              # FastAPI app
│   ├── routes/
│   │   ├── tasks.py         # Task endpoints
│   │   ├── agents.py        # Agent management
│   │   └── metrics.py       # Metrics endpoints
│   ├── middleware/
│   │   ├── auth.py          # API key auth
│   │   ├── rate_limit.py    # Rate limiting
│   │   └── tracing.py       # OpenTelemetry
│   └── models/
│       ├── requests.py      # Pydantic models
│       └── responses.py
├── orchestrator/
│   ├── __init__.py
│   ├── orchestrator.py      # Main orchestrator
│   ├── planner.py           # Task decomposition
│   └── executor.py          # Execution engine
├── agents/
│   ├── __init__.py
│   ├── base.py              # Base agent class
│   ├── research.py          # Research agent
│   ├── analysis.py          # Analysis agent
│   ├── writer.py            # Writer agent
│   └── code.py              # Code agent
├── services/
│   ├── database.py          # PostgreSQL
│   ├── cache.py             # Redis
│   ├── queue.py             # Message queue
│   └── storage.py           # File storage
├── observability/
│   ├── logging.py           # Structured logging
│   ├── metrics.py           # Prometheus metrics
│   └── tracing.py           # OpenTelemetry
├── config/
│   ├── settings.py          # Configuration
│   └── config.yaml          # Default config
├── tests/
│   ├── test_api.py
│   ├── test_orchestrator.py
│   └── test_agents.py
├── deploy/
│   ├── docker-compose.yml
│   ├── nginx.conf
│   └── prometheus/
│       └── alerts.yml
├── requirements.txt
├── Dockerfile
└── README.md

[Demo - Main Application]:

api/main.py

from fastapi import FastAPI, Depends from contextlib import asynccontextmanager from api.routes import tasks, agents, metrics from api.middleware.auth import AuthMiddleware from api.middleware.rate_limit import RateLimitMiddleware from observability.tracing import setup_tracing from observability.logging import setup_logging from services.database import DatabasePool from services.cache import CacheService from config.settings import Settings

settings = Settings() logger = setup_logging("ai-ops-center")

@asynccontextmanager async def lifespan(app: FastAPI): """Application lifecycle management""" # Startup logger.info("Starting AI Operations Center")

# Initialize services app.state.db = await DatabasePool.create(settings.database_url) app.state.cache = await CacheService.create(settings.redis_url)

# Setup tracing setup_tracing("ai-ops-center", settings.otlp_endpoint)

logger.info("All services initialized") yield

# Shutdown logger.info("Shutting down") await app.state.db.close() await app.state.cache.close()

def create_app() -> FastAPI: """Create and configure the application""" app = FastAPI( title="AI Operations Center", version="1.0.0", lifespan=lifespan )

# Add middleware app.add_middleware(AuthMiddleware, api_keys=settings.api_keys) app.add_middleware(RateLimitMiddleware, rate_limit=settings.rate_limit)

# Add routes app.include_router(tasks.router, prefix="/api/v1/tasks", tags=["tasks"]) app.include_router(agents.router, prefix="/api/v1/agents", tags=["agents"]) app.include_router(metrics.router, prefix="/metrics", tags=["metrics"])

# Health check @app.get("/health") async def health(): return {"status": "healthy", "version": "1.0.0"}

@app.get("/ready") async def ready(): db_ok = await app.state.db.is_healthy() cache_ok = await app.state.cache.is_healthy() return { "ready": db_ok and cache_ok, "checks": {"database": db_ok, "cache": cache_ok} }

return app

app = create_app()

if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)

[Demo - Task Endpoint]:

api/routes/tasks.py

from fastapi import APIRouter, Depends, HTTPException, BackgroundTasks from api.models.requests import TaskRequest from api.models.responses import TaskResponse, TaskStatus from orchestrator.orchestrator import Orchestrator from observability.metrics import TASK_COUNTER, TASK_DURATION import time import uuid

router = APIRouter()

@router.post("/", response_model=TaskResponse) async def create_task( request: TaskRequest, background: BackgroundTasks, orchestrator: Orchestrator = Depends(get_orchestrator) ): """Create and execute a new task""" task_id = str(uuid.uuid4()) start_time = time.time()

# Record metric TASK_COUNTER.labels(type=request.task_type, status="started").inc()

try: # Execute task result = await orchestrator.execute( task_id=task_id, description=request.description, context=request.context, priority=request.priority )

duration = time.time() - start_time TASK_DURATION.labels(type=request.task_type).observe(duration) TASK_COUNTER.labels(type=request.task_type, status="completed").inc()

# Log task for analytics (non-blocking) background.add_task(log_task_completion, task_id, result, duration)

return TaskResponse( task_id=task_id, status="completed", result=result, duration_seconds=duration, tokens_used=result.get("total_tokens", 0), agents_used=result.get("agents_used", []) )

except Exception as e: TASK_COUNTER.labels(type=request.task_type, status="failed").inc() raise HTTPException(status_code=500, detail=str(e))

@router.get("/{task_id}", response_model=TaskStatus) async def get_task_status(task_id: str): """Get status of a task""" # Query from database task = await db.get_task(task_id) if not task: raise HTTPException(status_code=404, detail="Task not found") return task

@router.get("/", response_model=list[TaskStatus]) async def list_tasks(limit: int = 10, offset: int = 0): """List recent tasks""" return await db.list_tasks(limit=limit, offset=offset)

---

Scene 5: Enterprise Features (12:00-15:00)

[Visual]: Enterprise-specific features [Animation]: Security, cost control, audit features

[Audio/Script]:

"Enterprise systems need enterprise features."

[Demo - API Key Authentication]:

api/middleware/auth.py

from fastapi import Request, HTTPException from starlette.middleware.base import BaseHTTPMiddleware import hashlib import hmac

class AuthMiddleware(BaseHTTPMiddleware): """API Key authentication middleware"""

def __init__(self, app, api_keys: dict): super().__init__(app) self.api_keys = api_keys # {key_hash: {"name": "...", "tier": "...", "limits": {...}}}

async def dispatch(self, request: Request, call_next): # Skip auth for health/metrics endpoints if request.url.path in ["/health", "/ready", "/metrics"]: return await call_next(request)

# Get API key api_key = request.headers.get("X-API-Key") if not api_key: raise HTTPException(status_code=401, detail="API key required")

# Validate key key_hash = hashlib.sha256(api_key.encode()).hexdigest() key_info = self.api_keys.get(key_hash)

if not key_info: raise HTTPException(status_code=401, detail="Invalid API key")

# Add key info to request state request.state.api_key_name = key_info["name"] request.state.api_key_tier = key_info["tier"] request.state.api_key_limits = key_info["limits"]

return await call_next(request)

[Demo - Cost Control]:

services/cost_control.py

from dataclasses import dataclass from typing import Optional import asyncio

@dataclass class TokenBudget: """Token budget for an API key""" daily_limit: int monthly_limit: int current_daily: int = 0 current_monthly: int = 0

class CostController: """Control and track AI costs"""

def __init__(self, db, cache): self.db = db self.cache = cache self.token_prices = { "claude-sonnet-4-20250514": {"input": 0.003, "output": 0.015}, # per 1K tokens "claude-opus-4-5-20251101": {"input": 0.015, "output": 0.075}, }

async def check_budget(self, api_key: str, estimated_tokens: int) -> bool: """Check if API key has budget for request""" budget = await self._get_budget(api_key)

if budget.current_daily + estimated_tokens > budget.daily_limit: return False if budget.current_monthly + estimated_tokens > budget.monthly_limit: return False

return True

async def record_usage(self, api_key: str, model: str, input_tokens: int, output_tokens: int): """Record token usage""" total_tokens = input_tokens + output_tokens

# Calculate cost prices = self.token_prices.get(model, {"input": 0.003, "output": 0.015}) cost = (input_tokens / 1000 prices["input"]) + (output_tokens / 1000 prices["output"])

# Update counters await self.db.execute(""" INSERT INTO token_usage (api_key, model, input_tokens, output_tokens, cost, created_at) VALUES ($1, $2, $3, $4, $5, NOW()) """, api_key, model, input_tokens, output_tokens, cost)

# Update budget counters in cache await self.cache.incrby(f"tokens:daily:{api_key}", total_tokens) await self.cache.incrby(f"tokens:monthly:{api_key}", total_tokens)

async def get_usage_report(self, api_key: str, period: str = "month") -> dict: """Get usage report for API key""" return await self.db.fetchrow(""" SELECT SUM(input_tokens) as total_input, SUM(output_tokens) as total_output, SUM(cost) as total_cost, COUNT(*) as request_count FROM token_usage WHERE api_key = $1 AND created_at > NOW() - INTERVAL '1 month' """, api_key)

[Demo - Audit Logging]:

services/audit.py

from dataclasses import dataclass from datetime import datetime from typing import Optional import json

@dataclass class AuditEvent: """Audit log event""" event_id: str timestamp: datetime api_key: str action: str resource: str details: dict ip_address: str user_agent: str success: bool error: Optional[str] = None

class AuditLogger: """Enterprise audit logging"""

def __init__(self, db): self.db = db

async def log(self, event: AuditEvent): """Log an audit event""" await self.db.execute(""" INSERT INTO audit_log (event_id, timestamp, api_key, action, resource, details, ip_address, user_agent, success, error) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10) """, event.event_id, event.timestamp, event.api_key, event.action, event.resource, json.dumps(event.details), event.ip_address, event.user_agent, event.success, event.error )

async def query(self, api_key: str = None, action: str = None, start: datetime = None, end: datetime = None): """Query audit logs""" query = "SELECT * FROM audit_log WHERE 1=1" params = []

if api_key: params.append(api_key) query += f" AND api_key = ${len(params)}" if action: params.append(action) query += f" AND action = ${len(params)}" if start: params.append(start) query += f" AND timestamp >= ${len(params)}" if end: params.append(end) query += f" AND timestamp <= ${len(params)}"<%14%26%>

query += " ORDER BY timestamp DESC LIMIT 1000" return await self.db.fetch(query, *params)

---

Scene 6: Deployment (15:00-17:00)

[Visual]: Docker Compose and deployment [Animation]: Containers starting up

[Audio/Script]:

"Package everything for deployment."

[Demo - Docker Compose]:

deploy/docker-compose.yml

version: '3.8'

services: # Main API service (3 replicas) api: build: . environment: - DATABASE_URL=postgresql://postgres:password@db:5432/aiops - REDIS_URL=redis://redis:6379 - OTLP_ENDPOINT=http://jaeger:4317 deploy: replicas: 3 resources: limits: memory: 2G cpus: '1.0' healthcheck: test: ["CMD", "curl", "-f", "http://localhost:8000/health"] interval: 30s timeout: 10s retries: 3 depends_on: - db - redis

# Load balancer nginx: image: nginx:alpine ports: - "80:80" - "443:443" volumes: - ./nginx.conf:/etc/nginx/nginx.conf - ./certs:/etc/nginx/certs depends_on: - api

# Database db: image: postgres:15 environment: - POSTGRES_DB=aiops - POSTGRES_PASSWORD=password volumes: - postgres_data:/var/lib/postgresql/data healthcheck: test: ["CMD-SHELL", "pg_isready -U postgres"] interval: 10s timeout: 5s retries: 5

# Cache redis: image: redis:7-alpine volumes: - redis_data:/data healthcheck: test: ["CMD", "redis-cli", "ping"] interval: 10s timeout: 5s retries: 5

# Monitoring prometheus: image: prom/prometheus volumes: - ./prometheus:/etc/prometheus - prometheus_data:/prometheus command: - '--config.file=/etc/prometheus/prometheus.yml' - '--storage.tsdb.retention.time=15d'

grafana: image: grafana/grafana ports: - "3000:3000" volumes: - grafana_data:/var/lib/grafana - ./grafana/dashboards:/etc/grafana/provisioning/dashboards environment: - GF_SECURITY_ADMIN_PASSWORD=admin

jaeger: image: jaegertracing/all-in-one ports: - "16686:16686" # UI environment: - COLLECTOR_OTLP_ENABLED=true

volumes: postgres_data: redis_data: prometheus_data: grafana_data:

---

Scene 7: Testing & Validation (17:00-19:00)

[Visual]: Test results and validation [Animation]: Tests passing, system verified

[Audio/Script]:

"Test everything before declaring victory."

[Demo - Testing]:

tests/test_integration.py

import pytest import httpx from fastapi.testclient import TestClient

@pytest.fixture def client(): return TestClient(app)

@pytest.fixture def api_key(): return "test-api-key-123"

class TestTaskEndpoint: def test_create_simple_task(self, client, api_key): """Test creating a simple task""" response = client.post( "/api/v1/tasks/", headers={"X-API-Key": api_key}, json={ "description": "Summarize the benefits of AI", "task_type": "research", "priority": "normal" } )

assert response.status_code == 200 data = response.json() assert "task_id" in data assert data["status"] == "completed" assert data["duration_seconds"] > 0

def test_create_complex_task(self, client, api_key): """Test multi-agent task""" response = client.post( "/api/v1/tasks/", headers={"X-API-Key": api_key}, json={ "description": "Research AI trends, analyze key patterns, and write a summary report", "task_type": "multi-agent", "priority": "high" } )

assert response.status_code == 200 data = response.json() assert len(data["agents_used"]) >= 2

def test_rate_limiting(self, client, api_key): """Test rate limiting works""" # Make many requests quickly responses = [] for _ in range(100): r = client.post( "/api/v1/tasks/", headers={"X-API-Key": api_key}, json={"description": "Quick test", "task_type": "test"} ) responses.append(r.status_code)

# Should see some 429s assert 429 in responses

def test_invalid_api_key(self, client): """Test authentication""" response = client.post( "/api/v1/tasks/", headers={"X-API-Key": "invalid-key"}, json={"description": "Test"} )

assert response.status_code == 401

class TestObservability: def test_health_endpoint(self, client): """Test health check""" response = client.get("/health") assert response.status_code == 200 assert response.json()["status"] == "healthy"

def test_metrics_endpoint(self, client): """Test Prometheus metrics""" response = client.get("/metrics") assert response.status_code == 200 assert "agent_requests_total" in response.text

def test_ready_endpoint(self, client): """Test readiness check""" response = client.get("/ready") assert response.status_code == 200 assert response.json()["ready"] == True

Load test

async def load_test(): """Simple load test""" async with httpx.AsyncClient() as client: tasks = [] for i in range(100): task = client.post( "http://localhost/api/v1/tasks/", headers={"X-API-Key": "load-test-key"}, json={"description": f"Load test task {i}"} ) tasks.append(task)

results = await asyncio.gather(*tasks, return_exceptions=True)

success = sum(1 for r in results if not isinstance(r, Exception) and r.status_code == 200) print(f"Success rate: {success/len(results)*100:.1f}%")

---

Scene 8: Graduation (19:00-20:00)

[Visual]: Ultimate achievement unlock [Animation]: Level 50 celebration, all badges displayed

[Audio/Script]:

"Your submission requirements:
>
| Component | Points |
|-----------|--------|
| Full API with authentication | 600 |
| 4+ specialist agents | 600 |
| Orchestrator with decomposition | 600 |
| Scalable deployment (3+ replicas) | 500 |
| Full observability stack | 500 |
| Cost control and audit logging | 400 |
| Test suite with >80% coverage | 400 |
| Documentation | 400 |
>
Total possible: 4000 XP
>
Completing this capstone:
- Awards the 'Production Master' badge
- Awards the 'AI Grandmaster' title
- Reaches Level 50 - Maximum
- Completes the entire curriculum
>
You started knowing nothing about Claude.
>
Now you can build enterprise-grade AI systems.
>
You are an AI engineer. A Production Master. A Grandmaster.
>
Go build the future."

[Final animation]: All 4 track badges combine into 'AI Grandmaster' badge, Level 50, credits roll

---

Post-Video Challenge

Challenge ID: TRACK4_CAPSTONE (FINAL) Type: Full Project Submission Time Limit: None

Requirements:

1. API Service (600 XP)

  • FastAPI with proper structure
  • API key authentication
  • Rate limiting
  • Health/readiness endpoints
2. Agent Pool (600 XP)
  • 4+ specialist agents
  • Research, Analysis, Writer, Code (minimum)
  • Proper capability definitions
3. Orchestrator (600 XP)
  • Task decomposition
  • Dependency management
  • Parallel execution
  • Result synthesis
4. Infrastructure (500 XP)
  • Docker Compose deployment
  • 3+ API replicas
  • Load balancer
  • Database and cache
5. Observability (500 XP)
  • Structured logging
  • Prometheus metrics
  • Distributed tracing
  • Grafana dashboard
6. Enterprise Features (400 XP)
  • Cost tracking/limits
  • Audit logging
  • Usage reports
7. Testing (400 XP)
  • Unit tests
  • Integration tests
  • Load test results
  • >80% coverage
8. Documentation (400 XP)
  • README with setup
  • API documentation
  • Architecture diagram
  • Runbook for operations
Submission:
  • Complete project in your workspace
  • Run: /validate final-capstone
  • 5-minute demo video showing all features
Rewards:
  • Base XP: 750
  • Challenge XP: Up to 4000
  • Achievement: "Production Master" (Track 4 Complete)
  • Title: "AI Grandmaster" (Level 50)
  • Certificate: "AI Campus Completion Certificate"
---

SEO Metadata

Alt-text: Final capstone project - build an enterprise AI operations center with multi-agent orchestration, scalable deployment, full observability, and enterprise features.

Tags: enterprise AI, final capstone, production AI system, multi-agent enterprise, AI operations center, AI grandmaster

Keywords: enterprise ai system, ai capstone final, production ai platform, multi-agent enterprise, ai operations center, ai grandmaster certification

Last modified: Wednesday, 10 December 2025, 1:05 AM